已知二项式的展开式中各项系数和为64.
(Ⅰ)求; (Ⅱ)求展开式中的常数项
某公司欲建连成片的网球场数座,用288万元购买土地20000平方米,每座球场的建筑面积为1000平方米,球场每平方米的平均建筑费用与所建的球场数有关,当该球场建n座时,每平方米的平均建筑费用表示,且
(其中
),又知建5座球场时,每平方米的平均建筑费用为400元.
(1)为了使该球场每平方米的综合费用最省(综合费用是建筑费用与购地费用之和),公司应建几座网球场?
(2)若球场每平方米的综合费用不超过820元,最多建几座网球场?
在中,
分别是角A,B,C的对边,且满足
.
(1)求角B的大小;
(2)若最大边的边长为
,且
,求最小边长.
已知数列,
,且满足
.
(1)求证数列是等差数列;
(2)设,求数列
的前n项和
.
已知命题:“不等式
对任意
恒成立”,命题
:“
表示焦点在x轴上的椭圆”,若
为真命题,
为真,求实数
的取值范围.
已知椭圆的离心率为
,椭圆的的一个顶点和两个焦点构成的三角形的面积为4,
(1)求椭圆C的方程;
(2)已知直线与椭圆C交于A, B两点,若点M(
, 0),求证
为定值.