游客
题文

设V是全体平面向量构成的集合,若映射 f : V R 满足:对任意向量 a = ( x 1 , y 1 ) V b = ( x 2 , y 2 ) V

以及任意 λ R ,均有 f ( a λ + ( 1 - λ ) b ) = λ f ( a ) + ( 1 - λ ) f ( b ) 则称映射 f 具有性质 P .现给出如下映射:

f 1 : V R , f 1 ( m ) = x - y , m = ( x , y ) V ;

f 2 : V R , f 2 ( m ) = x 2 + y , m = ( x , y ) V ;

f 3 : V R , f 3 ( m ) = x + y + 1 , m = ( x , y ) V .

其中,具有性质 P 的映射的序号为.(写出所有具有性质P的映射的序号)

科目 数学   题型 填空题   难度 中等
知识点: 函数迭代
登录免费查看答案和解析
相关试题

下列命题:①集合的子集个数有16个;②定义在上的奇函数必满足;③既不是奇函数又不是偶函数;④偶函数的图像一定与轴相交;⑤上是减函数。其中真命题的序号是(把你认为正确的命题的序号都填上).

函数在区间[0,4]的最大值是

计算:

函数的定义域为

函数是定义在实数集上的不恒为零的偶函数,,且对任意实数都有,则的值是

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号