设V是全体平面向量构成的集合,若映射 f : V → R 满足:对任意向量 a ⇀ = ( x 1 , y 1 ) ∈ V b ⇀ = ( x 2 , y 2 ) ∈ V ,
以及任意 λ ∈ R ,均有 f ( a ⇀ λ + ( 1 - λ ) b ⇀ ) = λ f ( a ⇀ ) + ( 1 - λ ) f ( b ⇀ ) 则称映射 f 具有性质 P .现给出如下映射:
① f 1 : V → R , f 1 ( m ) = x - y , m = ( x , y ) ∈ V ;
② f 2 : V → R , f 2 ( m ) = x 2 + y , m = ( x , y ) ∈ V ;
③ f 3 : V → R , f 3 ( m ) = x + y + 1 , m = ( x , y ) ∈ V .
其中,具有性质 P 的映射的序号为.(写出所有具有性质P的映射的序号)
下列命题:①集合的子集个数有16个;②定义在上的奇函数必满足;③既不是奇函数又不是偶函数;④偶函数的图像一定与轴相交;⑤在上是减函数。其中真命题的序号是(把你认为正确的命题的序号都填上).
函数在区间[0,4]的最大值是
计算:=.
函数的定义域为
函数是定义在实数集上的不恒为零的偶函数,,且对任意实数都有,则的值是
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号