如图,在四棱锥 P - A B C D 中, P A ⊥ 平面 A B C D ,底面 A B C D 是菱形, A B = 2 , ∠ B A D = 60 ° .
(Ⅰ)求证: B D ⊥ 平面 P A C ;
(Ⅱ)若 P A = A B ,求 P B 与 A C 所成角的余弦值; (Ⅲ)当平面 P B C 与平面 P D C 垂直时,求 P A 的长.
(12分) ,其中. (1)若,求函数f(x)的最小正周期; (2)若满足,且,求函数f(x)的单调递减区间.
(13分) (1)已知,,求的值; (2)已知.求的值.
(13分)计算(1); (2).
(13分)已知;,求,。
平面直角坐标系中,直线截以原点为圆心的圆所得的弦长为 (1)求圆的方程; (2)若直线与圆切于第一象限,且与坐标轴交于,当长最小时,求直线的方程; (3)问是否存在斜率为的直线,使被圆截得的弦为,以为直径的圆经过原点.若存在,写出直线的方程;若不存在,说明理由.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号