游客
题文

我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x万元,可获得利润(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x万元,可获利润(万元)
⑴若不进行开发,求5年所获利润的最大值是多少?
⑵若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?
⑶根据⑴、⑵,该方案是否具有实施价值?

科目 数学   题型 解答题   难度 中等
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

(本题8分) 如图,AD、BC是⊙O的两条弦,且AD=BC,求证:AB=CD。

(本题8分) 已知:y=y1+y2,y1与x2成正比例,y2与x成反比例,且x=1时,y=3;x=-1时,y=1. 求x=时,y的值.

(本题8分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).

(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2.
(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标.
(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.

(本题6分)一只不透明的口袋中放着若干个黄球和绿球,这两种球除了颜色之外没有其它任何区别,袋中的球已经搅匀,从口袋中取出一个球取出黄球的概率为
(1)取出绿球的概率是多少?
(2)如果袋中的黄球有12个,那么袋中的绿球有多少个?

(本题12分)如图,在正方形ABCD中,E为BC上一点,且BE=2CE;F为AB上一动点,BF=nAF,

(1)若n=1,则==
(2)若n=2,求证:8AP=3PE
(3)当n=_____时,AE⊥DF(直接填出结果)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号