已知数列的首项为
=3,通项
与前n项和
之间满足2
=
·
(n≥2)。
(1)求证:是等差数列,并求公差;
(2)求数列的通项公式。
如图,四棱锥中,
.
,F为PC的中点,
.
(1)求的长:
(2)求二面角的正弦值.
盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同
(1)从盒中一次随机抽出2个球,求取出的2个球颜色相同的概率:
(2)从盒中一次随机抽出4个球,其中红球,黄球,绿球的个数分别记为,随机变量X表示
中的最大数,求X的概率分布列和数学期望
.
已知锐角中,角A、B、C所对的边分别为a,b,c,且
(1)求角A的大小:
(2)求的取值范围.
已知函数.
(1)若对于都有
成立,试求a的取值范围;
(2)记,当
时,函数
在区间
上有两个零点,求实数b的取值范围.
已知,其中
,
.
(1)求的周期和单调递减区间;
(2)在△ABC中,角A,B,C的对边分别为,
,
,求边长
和
的值(
).