如图6.点D,E在△ABC的边BC上.连接AD.AE.①AB=AC:②AD=AE:
③BD=CE。以此三个等式中的两个作为命题的题设,另一个作为命题的结论.构成三个命题:①②③;①③
②,②③
①。
(1)以上三个命题是真命题的为(直接作答)__________________;
(2)选择一个真命题进行证明(先写出所选命题.然后证明)。
(1)计算:;
(2)化简:.
如图,抛物线y=ax2+bx(a>0)与双曲线y=相交于点A,B.已知点B的坐标为(﹣2,﹣2),点A在第一象限内,且tan∠AOx=4.过点A作直线AC∥x轴,交抛物线于另一点C.
(1)求双曲线和抛物线的解析式;
(2)计算△ABC的面积;
(3)在抛物线上是否存在点D,使△ABD的面积等于△ABC的面积.若存在,请你写出点D的坐标;若不存在,请你说明理由.
如图,在矩形ABCD中,AD=4,AB=m(m>4),点P是AB边上的任意一点(不与A、B重合),连结PD,过点P作PQ⊥PD,交直线BC于点Q.
(1)当m=10时,是否存在点P使得点Q与点C重合?若存在,求出此时AP的长;若不存在,说明理由;
(2)连结AC,若PQ∥AC,求线段BQ的长(用含m的代数式表示)
(3)若△PQD为等腰三角形,求以P、Q、C、D为顶点的四边形的面积S与m之间的函数关系式,并写出m的取值范围.
如图,是
的直径,
为圆周上一点,
,
过点
的切线与
的延长线交于点
.
求证:(1);
(2)≌
.
刘大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,刘大叔去年甲、乙两种蔬菜各种植了多少亩?