如图,在Rt△ABC中,∠B=90°,AB=1,BC=,以点C
为圆心,CB为半径的弧交CA于点D;以点A为圆心,AD为半径的弧交AB于点E.
(1)求AE的长度;
(2)分别以点A、E为圆心,AB长为半径画弧,两弧交于点F(F与C在AB两侧),连接AF、EF,设EF交弧DE所在的圆于点G,连接AG,试猜想∠EAG的大小,并说明理由.
![]() |
设m=2100,n=375,为了比较m与n的大小.小明想到了如下方法:m=2100=(24)25=1625,即25个16相乘的积;n=375=(33)25=2725,即25个27相乘的积,显然m<n,现在设x=430,y=340,请你用小明的方法比较x与y的大小
如图,把△ABC纸片沿DE折叠,使点A落在四边形BCDE内部点A′的位置.聪明的同学,你能猜出∠A′与∠1、∠2之间的数量关系吗?请找出来,并说明理由.
如图,∠1=∠2,∠C=∠D.∠A与∠F有怎样的数量关系?请说明理由.
已知2x+5y-3=0,求的值.
作图:
(1)画出图中△ABC的高AD(标注出点D的位置);
(2)画出把△ABC沿射线AD方向平移2cm后得到的△A1B1C1;
(3)根据“图形平移”的性质,得BB1=cm,AC与A1C1的关系是:.