已知:AB是⊙O的直径,弦CD⊥AB于点G,E是直线AB上一动点(不与点A、B、G重合),直线DE交⊙O于点F,直线CF交直线AB于点P.设⊙O的半径为r.
(1)如图1,当点E在直径AB上时,试证明:OE·OP=r2
(2)当点E在AB(或BA)的延长线上时,以如图2点E的位置为例,请你画出符合题意的图形,标注上字母,(1)中的结论是否成立?请说明理由.
某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:
x(元) |
15 |
20 |
30 |
… |
y(件) |
25 |
20 |
10 |
… |
若日销售量y是销售价x的一次函数.
(1)求出日销售量y(件)与销售价x(元)的函数关系式;
(2)要使每日销售利润最大,每件产品的销售价应定为多少元?此时,每日销售的利润是多少元?
(3)为了扩大销售量,经理决定每日销售的利润降到200元,每件产品的销售价应定为多少元?
如图,AC是⊙O的直径,P是⊙O外一点,连结PC交⊙O于B,连结PA、AB,且满足PC=50,PA=30,PB=18.
(1)求证:△PAB∽△PCA;
(2)求证:AP是⊙O的切线.
【改编】如图,有一个可以自由转动的转盘被平均分成四个扇形,四个扇形内部分别标有数字1、-2、3、-6.转动转盘后任其自由停止(当指针指在边界线时视为无效,重转).
(1)若将转盘转动一次,求停止后指针所指扇形内的数字是负数的概率.
(2)若将转盘转动两次,每一次停止转动后,第一次指针指向数字记为m,第二次指向的数字记为n,从而确定一个点的坐标为A(m,n).请用列表或者画树形图的方法求出所有可能得到的点A的坐标.并求出点A在双曲线y=-上的概率.
【原创题】我校数学兴趣小组为了解泌园牌净水机的销售情况,对我市泌园牌净水机专卖店第一季度A、B、C、D四种型号的销量做了统计,绘制成如下两幅统计图(均不完整)。
(1)该店第一季度售出泌园牌净水机共多少台?
(2)把两幅统计图补充完整;
(3)若该专卖店计划订购这四款型号泌园牌净水机900辆,求C型泌园牌净水机订购多少辆?
【原创题】先化简,再求值,其中x=
.