一宇宙空间探测器从某一星球的表面垂直升空,假设探测器的质量恒为1500kg,发动机的推力为恒力,宇宙探测器升空到某一高度时,发动机突然关闭,如图表示其速度随时间的变化规律
(1)升高6s、20s、40s,探测器的运动情况如何?(要求有计算过程,说清加速度和速度的具体值)
(2 ) 求探测器在该行星表面达到的最大高度
(3)计算该行星表面的重力加速度及发动机的推力(假设行星表面没有空气阻力)
如图所示,一辆载重卡车沿平直公路行驶,车上载有质量均为m的A、B两块长方体水泥预制件。己知预制件左端与车厢前挡板的距离为L,A、B间以及B与车厢间的动摩擦因数分别为,各接触面间的最大静摩擦力等于滑动摩擦力。卡车以速度v0匀速行驶时,因前方出现障碍物而制动并做匀减速直线运动。问:
(1)卡车制动的加速度满足什么关系时,预制件A相对B滑动,而B相对车厢底板静止?
(2)卡车制动后为保证司机安全,在B相对车厢底板静止的情况下,预制件A不与车厢前挡板碰撞,则卡车从开始制动到停止所经历的时间应满足什么条件?
如图所示,一质量为m的物块在与水平方向成θ的力F的作用下从A点由静止开始沿水平直轨道运动,到B点后撤去力F, 物体飞出后越过“壕沟”落在平台EG段.已知物块的质量m =1kg,物块与水平直轨道间的动摩擦因数为μ=0.5,AB段长L=10m,BE的高度差h =0.8m,BE的水平距离 x =1.6m.若物块可看做质点,空气阻力不计,g取10m/s2.
(1)要越过壕沟,求物块在B点最小速度v的大小;
(2)若θ=370,为使物块恰好越过“壕沟”,求拉力F的大小;
(3)若θ大小不确定,为使物块恰好越过“壕沟”,求力F的最小值(结果可保留根号).
如图所示,半径R=0.8m的光滑1/4圆弧轨道固定在光滑水平上,轨道上方的A点有一个可视为质点的质量m=1kg的小物块。小物块由静止开始下落后打在圆弧轨道上的B点但未反弹,在该瞬间碰撞过程中,小物块沿半径方向的分速度即刻减为零,而沿切线方向的分速度不变,此后小物块将沿着圆弧轨道滑下。已知A点与轨道的圆心O的连线长也为R,且AO连线与水平方向的夹角为30°,C点为圆弧轨道的末端,紧靠C点有一质量M=3kg的长木板,木板的上表面与圆弧轨道末端的切线相平,小物块与木板间的动摩擦因数,g取10m/s2。求:
(1)小物块刚到达B点时的速度;
(2)小物块沿圆弧轨道到达C点时对轨道压力FC的大小;
(3)木板长度L至少为多大时小物块才不会滑出长木板?
如图所示,质量为m、边长为L的正方形线框,在竖直平面内从有界的匀强磁场上方由静止自由下落.线框电阻为R,匀强磁场的宽度为H(L<H),磁感应强度为B.线框下落过程中ab边始终与磁场边界平行且水平.已知ab边刚进入磁场和刚穿出磁场时线框都立即做减速运动,且瞬时加速度大小都是,求:
(1)ab边刚进入磁场与ab边刚出磁场时的速度大小;
(2)线框进入磁场的过程中产生的热量.
水上滑梯可简化成如图所示的模型,斜槽AB和水平槽BC平滑连接,斜槽AB的竖直高度H=5.0m,倾角θ=37°。BC面与水面的距离h=0.80m,人与AB、BC间的摩擦均忽略不计。取重力加速度g=10m/s2,cos37°=0.8,sin37°=0.6。一同学从滑梯顶端A点无初速地自由滑下,求:
(1)该同学沿斜槽AB下滑时加速度的大小a;
(2)该同学滑到B点时速度的大小vB;
(3)从C点滑出至落到水面的过程中,该同学在水平方向位移的大小x。