(本题10分)已知抛物线C:,过原点O作抛物线C的切线
使切点P在第一象限,
(1)求k的值;
(2)过点P作切线的垂线,求它与抛物线C的另一个交点Q的坐标。
已知椭圆
的离心率
,连接椭圆的四个顶点得到的菱形的面积为4.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线
与椭圆相交于不同的两点
、
,已知点
的坐标为
.
(i)若
,求直线
的倾斜角;
(ii)若点
在线段
的垂直平分线上,且
.求
的值.
已知函数 ,其中
(Ⅰ)若
,求曲线
在点
处的切线方程;
(Ⅱ)若在区间
上,
恒成立,求
的取值范围.
如图,在五面体 中,四边形 是正方形, 平面 , , , , .
(Ⅰ)求异面直线
与
所成角的余弦值;
(Ⅱ)证明
平面
;
(Ⅲ)求二面角
的正切值。
有编号为 , ,… 的10个零件,测量其直径(单位:cm),得到下面数据:
其中直径在区间 内的零件为一等品。
(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;
(Ⅱ)从一等品零件中,随机抽取2个.
(ⅰ)用零件的编号列出所有可能的抽取结果;
(ⅱ)求这2个零件直径相等的概率。
在
中,
.
(Ⅰ)证明
:
(Ⅱ)若
=-
,求
的值。