(本题10分)已知抛物线C:,过原点O作抛物线C的切线
使切点P在第一象限,
(1)求k的值;
(2)过点P作切线的垂线,求它与抛物线C的另一个交点Q的坐标。
(本小题满分15分)已知椭圆C:+
=1(a>b>0)的离心率为
,且经过点P(1,
).
(1)求椭圆C的方程;
(2)设F是椭圆C的右焦点,M为椭圆上一点,以M为圆心,MF为半径作圆M.问点M满足什么条件时,圆M与y轴有两个交点? 并求两点间距离的最大值.
(本小题满分15分)
因发生意外交通事故,一辆货车上的某种液体泄漏到一渔塘中.为了治污,根据环保部门的建议,现决定在渔塘中投放一种可与污染液体发生化学反应的药剂.已知每投放,且
个单位的药剂,它在水中释放的浓度
(克/升)随着时间
(天)变化的函数关系式近似为
,其中
.
若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.
(1)若一次投放4个单位的药剂,则有效治污时间可达几天?
(2)若第一次投放2个单位的药剂,6天后再投放个单位的药剂,要使接下来的4天中能够持续有效治污,试求
的最小值.(精确到0.1,参考数据:
取1.4)
(本小题满分14分)如图,在直三棱柱ABC—A1B1C1中,AB=AC,点D是BC的中点.
(1)求证:A1B//平面ADC1;
(2)如果点E是B1C1的中点,求证:平面平面BCC1B1.
(本小题满分14分)已知△ABC的三个内角A、B、C所对的边分别为a、b、c,向量m=(sinA,1),n=(1,-cosA),且m⊥n.
(1)求角A;
(2)若b+c=a,求sin(B+
)的值.
已知函数(
是自然对数的底数)
(1)求的最小值;
(2)不等式的解集为P,若
求实数
的取值范围;
(3)已知,是否存在等差数列
和首项为
公比大于0的等比数列
,使数列
的前n项和等于