(本小题8分)已知一次函数(b为常数)的图象与反比例函数(k为常数.且)的图象相交于点P(3.1).(I) 求这两个函数的解析式;(II) 当x>3时,试判断与的大小.井说明理由。
已知关于 x 的一元二次方程 x 2 + x - m = 0 .
(1)若方程有两个不相等的实数根,求 m 的取值范围;
(2)二次函数 y = x 2 + x - m 的部分图象如图所示,求一元二次方程 x 2 + x - m = 0 的解.
已知 A x - 1 - B 2 - x = 2 x - 6 ( x - 1 ) ( x - 2 ) ,求 A 、 B 的值.
如图.已知 AB = DC , ∠ A = ∠ D , AC 与 DB 相交于点 O ,求证: ∠ OBC = ∠ OCB .
当 x 取何正整数值时,代数式 x + 3 2 与 2 x - 1 3 的值的差大于1.
如图1,在 ΔABC 中, ∠ ACB = 90 ° , AC = BC ,点 D 是 AB 边上一点(含端点 A 、 B ) ,过点 B 作 BE 垂直于射线 CD ,垂足为 E ,点 F 在射线 CD 上,且 EF = BE ,连接 AF 、 BF .
(1)求证: ΔABF ∽ ΔCBE ;
(2)如图2,连接 AE ,点 P 、 M 、 N 分别为线段 AC 、 AE 、 EF 的中点,连接 PM 、 MN 、 PN .求 ∠ PMN 的度数及 MN PM 的值;
(3)在(2)的条件下,若 BC = 2 ,直接写出 ΔPMN 面积的最大值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号