如图,飞机沿水平方向(A、B两点所在直线)飞行,前方有一座高山,为了避免飞机飞行过低,就必须测量山顶M到飞行路线AB的距离MN.飞机能够测量的数据有俯角和飞行的距离(因安全因素,飞机不能飞到山顶的正上方N处才测飞行距离),请设计一个距离MN的方案,要求:
(1)指出需要测量的数据(用字母表示,并在图中标出);
(2)用测出的数据写出求距离MN的步骤.
![]() |
欧拉 ,1707年 年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数 、棱数 、面数 之间存在一定的数量关系,给出了著名的欧拉公式.
(1)观察下列多面体,并把下表补充完整:
名称 |
三棱锥 |
三棱柱 |
正方体 |
正八面体 |
图形 |
|
|
|
|
顶点数 |
4 |
6 |
8 |
6 |
棱数 |
6 |
|
12 |
|
面数 |
4 |
5 |
|
8 |
(2)分析表中的数据,你能发现 、 、 之间有什么关系吗?请写出关系式: .
解不等式组 并求它的所有整数解的和.
如图,抛物线 与 轴交于 , 两点,且 ,与 轴交于点 ,连接 ,抛物线对称轴为直线 , 为第一象限内抛物线上一动点,过点 作 于点 ,与 交于点 ,设点 的横坐标为 .
(1)求抛物线的表达式;
(2)当线段 的长度最大时,求 点的坐标;
(3)抛物线上是否存在点 ,使得以点 , , 为顶点的三角形与 相似?若存在,求出 的值;若不存在,请说明理由.
如图,在等边三角形 中,点 是边 上一定点,点 是直线 上一动点,以 为一边作等边三角形 ,连接 .
【问题解决】
如图1,若点 在边 上,求证: ;
【类比探究】
如图2,若点 在边 的延长线上,请探究线段 , 与 之间存在怎样的数量关系?并说明理由.
今年疫情期间,针对各种入口处人工测量体温存在的感染风险高、效率低等问题,清华大学牵头研制一款“测温机器人”,如图1,机器人工作时,行人抬手在测温头处测量手腕温度,体温合格则机器人抬起臂杆行人可通行,不合格时机器人不抬臂杆并报警,从而有效阻隔病原体.
(1)为了设计“测温机器人”的高度,科研团队采集了大量数据.下表是抽样采集某一地区居民的身高数据:
测量对象 |
男性 岁) |
女性 岁) |
|||||
抽样人数(人 |
2000 |
5000 |
20000 |
2000 |
5000 |
20000 |
|
平均身高(厘米) |
173 |
175 |
176 |
164 |
165 |
164 |
|
根据你所学的知识,若要更准确的表示这一地区男、女的平均身高,男性应采用 176 厘米,女性应采用 厘米;
(2)如图2,一般的,人抬手的高度与身高之比为黄金比时给人的感觉最舒适,由此利用(1)中的数据得出测温头点 距地面105厘米.指示牌挂在两臂杆 , 的连接点 处, 点距地面110厘米.臂杆落下时两端点 , 在同一水平线上, 厘米,点 在点 的正下方5厘米处.若两臂杆长度相等,求两臂杆的夹角.
(参考数据表)
计算器按键顺序 |
计算结果(近似值) |
计算器按键顺序 |
计算结果(近似值) |
|
0.1 |
|
78.7 |
|
0.2 |
|
84.3 |
|
1.7 |
|
5.7 |
|
3.5 |
|
11.3 |