同学们,我们曾经研究过n×n的正方形网格,得到了网格中正方形的总数的表达式为.但n为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题.首先,通过探究我们已经知道
时,我们可以这样做:
(1)观察并猜想:=(1+0)×1+(1+1)×2=l+0×1+2+1×2=(1+2)+(0×1+1×2)
=(1+0)×1+(1+1)×
2+(l+2)×3
=1+0×1+2+1×2+3+2×3
=(1+2+3)+(0×1+1×2+2×3)=(1+0)×1+(1+1)×2+(l+2)×3+ ___________
="1+0×1+2+1×2+3+2×3+" ___________
=(1+2+3+4)+(___________)
…
(2)归纳结论:=(1+0)×1+(1+1)×2+(1+2)×3+…[1+(n-l)]n
=1+0×1+2+1×2+3+2×3+…+n+(n-1)×n
=(___________)+[ ___________]
=" ___________+" ___________
=×___________
(3 )实践应用:
通过以上探究过程,我们就可以算出当n为100时,正方形网格中正方形的总个数是_________。
小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,点E,F分别是矩形ABCD的两边AD,BC上的点,且EF∥AB,点M,N是EF上任意两点,则投掷一次,飞镖落在阴影部分的概率是。
如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且D点的横坐标是它的纵坐标的2倍.
(1)求边AB的长;
(2)求反比例函数的解析式和n的值;
(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.
已知反比例函数的图象与一次函数
的图象交于A(﹣1,a)、B(
,﹣3)两点,连结AO.
(1)求反比例函数和一次函数的表达式;
(2)设点C在y轴上,且与点A、O构成等腰三角形,求点C的坐标.
(本题满分分)如图,在△ABC中,∠ABC=90°,D是边AC上的一点,连接BD,使∠A=2∠1,E是BC上的一点,以BE为直径的⊙O经过点D.
(1)求证:AC是⊙O的切线;
(2)若∠A=60°,⊙O的半径为2,求阴影部分的面积.(结果保留根号和π)
(本题满分分)某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x元与日销售量y之间有如下关系:
X(元) |
3 |
4 |
5 |
6 |
y(个) |
20 |
15 |
12 |
10 |
(1)根据表中的数据在平面直角坐标系中描出实数对(x,y)的对应点.
(2)猜测并确定y与x之间的函数关系式,并画出图象;
(3)设经营此贺卡的销售利润为w元,试求出w与x之间的函数关系式,若物价局规定此贺卡的销售价最高不能超过10元/个,请你求出当日销售单价x定为多少元时,才能获得最大日销售利润?