同学们,我们曾经研究过n×n的正方形网格,得到了网格中正方形的总数的表达式为.但n为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题.首先,通过探究我们已经知道
时,我们可以这样做:
(1)观察并猜想:=(1+0)×1+(1+1)×2=l+0×1+2+1×2=(1+2)+(0×1+1×2)
=(1+0)×1+(1+1)×
2+(l+2)×3
=1+0×1+2+1×2+3+2×3
=(1+2+3)+(0×1+1×2+2×3)=(1+0)×1+(1+1)×2+(l+2)×3+ ___________
="1+0×1+2+1×2+3+2×3+" ___________
=(1+2+3+4)+(___________)
…
(2)归纳结论:=(1+0)×1+(1+1)×2+(1+2)×3+…[1+(n-l)]n
=1+0×1+2+1×2+3+2×3+…+n+(n-1)×n
=(___________)+[ ___________]
=" ___________+" ___________
=×___________
(3 )实践应用:
通过以上探究过程,我们就可以算出当n为100时,正方形网格中正方形的总个数是_________。
如图,一条直线过点A(0,4),B(2,0),将这条直线向左平移与x轴、y轴的负半轴分别交于点C、D,使DB=DC.
(1)求直线CD的函数解析式;
(2)求△BCD的面积;
(3)在直线AB或直线CD上是否存在点P,使△PBC的面积等于△BCD的面积的2倍?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.
某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡,使用这两种卡租书,租书金额y(元)琚租书时间x(天)之间的关系如下图所示。
(1)分别求出用租书卡和会员卡租书的金额y(元)琚租书时间x(天)之间的关系式;
(2)两种租书方式每天租书的收费分别是多少元(不含卡费)
(3)若两种租书卡使用期限均为一年(一年按365天计算),则这一年中如何选取这两种租书方式比较合算?
已知函数
(1)画出这个函数的图象;
(2)写出这个函数的图象与x轴,y轴的交点坐标
(3)求此函数的图象与坐标轴围成的三角形的面积。
已知汽车油箱中有油40升,汽车每行驶1小时消耗5升油,求油箱中的余油量Q(升)与行驶时间t(小时)之间的函数关系,并作出函数的图象。
已知一次函数图象经过点A(2,1)和点(-2,5),求这个一次函数的解析式.