(本小题满分12分)已知直线l:2mx-y-8m-3=0和圆C:(x-3)2+(y+6)2=25.(1)证明:不论m取什么实数,直线l与圆C总相交;(2)求直线l被圆C截得的线段的最短长度以及此时直线l的方程.
在正方体,求所成角的正弦值。
在正方体中, ⑴求证:∥平面 ⑵求与平面所成的角。
求与定点及定直线的距离的比是5:4的点P的轨迹
设F1、F2分别为椭圆C:=1(a>b>0)的左、右两个焦点. (1)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标; (2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;
已知圆C在x轴上的截距为和3,在y轴上的一个截距为1. (1)求圆C的标准方程; (2)若过点的直线l被圆C截得的弦AB的长为4,求直线l的倾斜角.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号