如图①,将菱形纸片AB(E)CD(F)沿对角线BD(EF)剪开,得到△ABD和△ECF,固定△ABD,并把△ABD与△ECF叠放在一起
(1)操作:如图②,将△ECF的顶点F固定在△ABD的BD边上的中点处,将△ECF绕点F在BD的上方左右旋转,设旋转时FC交BA于H(不与点B重合),EF交DA于G(不与点D重合),求证:BH·GD=BF2(2)操作:如图③,△ECF的顶点F在△ABD的BD边上滑动(不与点B、D重合),且CF如终过点A,过点A作AG∥CE,交EF于G,连接DG
探究:FD+DG= ,并请证明你的结论
![]() |
某校为创建“书香校园”,现有图书5600册,计划创建大小图书角共30个.其中每个小图书角需图书160册,大图书角所需图书比小图书角的2倍少80册.问该校创建的大小图书角各多少个?
为了深化教育改革,某校计划开设四个课外兴趣活动小组:音乐、体育、美术、舞蹈,学校要求每名学生都自主选择其中一个兴趣活动小组,为此学校采取随机抽样的方式进行了问卷调查,对调查结果进行统计并绘制了如下统计表.
选择课程 |
音乐 |
体育 |
美术 |
舞蹈 |
所占百分比 |
|
|
|
|
根据以上统计图表中的信息,解答下列问题:
(1)本次调查的总人数为 人;其中 ; ; ;
(2)请把条形图补充完整;
(3)若该校共有学生1000名,请估计该校选择“美术”的学生有多少人.
如图所示,一次函数 为常数)的图象与反比例函数 的图象都经过点 .
(1)求点 的坐标及一次函数的解析式;
(2)根据图象直接回答:在第一象限内,当 取何值时 .
如图所示,在四边形 中, 于点 , 于点 , , .求证:
(1) ;
(2)四边形 是平行四边形.
如图,动点 在以 为圆心, 为直径的半圆弧上运动(点 不与点 、 及 的中点 重合),连接 .过点 作 于点 ,以 为边在半圆同侧作正方形 ,过点 作 的切线交射线 于点 ,连接 、 .
(1)探究:如图一,当动点 在 上运动时;
①判断 是否成立?请说明理由;
②设 , 是否为定值?若是,求出该定值,若不是,请说明理由;
③设 , 是否为定值?若是,求出该定值,若不是,请说明理由;
(2)拓展:如图二,当动点 在 上运动时;
分别判断(1)中的三个结论是否保持不变?如有变化,请直接写出正确的结论.(均不必说明理由)