在平面直角坐标系中,点0是坐标原点,四边形ABCD为菱形,AB边在x轴上,点D在y轴上,点A的坐标是(一6,0),AB=10.
(1)求点C的坐标:
(2)连接BD,点P是线段CD上一动点(点P不与C、D两点重合),过点P作PE∥BC交BD与点E,过点B作BQ⊥PE交PE的延长线于点Q.设PC的长为x,PQ的长为y,求y与x之间的函数关系式(直接写出自变量x的取值范围);
(3)在(2)的条件下,连接AQ、AE,当x为何值时,S△BOE+S△AQE=S△DEP并判断此时以点P为圆心,以5为半径的⊙P与直线BC的位置关系,请说明理由.
如图,已知△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
(1)直线BE与AD的位置关系是 ;BE与AD之间的距离是线段 的长;
(2) 若AD=6cm,BE=2cm.,求BE与AD之间的距离.
如图, ∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC便是∠AOB的平分线,为什么?
如图,已知BE=CF,AB=CD,∠B=∠C,求证:AF=DE.
解下列不等式,并把解集在数轴上表示出来.
(本题12分)为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的收费标准如下表:
例如:某户居民1月份用水8立方米,应收水费为2×6+4×(8-6)=20(元).
请根据上表的内容解答下列问题:
(1)若某户居民2月份用水5立方米,则应收水费多少元?
(2)若某户居民3月份交水费36元,则用水量为多少立方米?
(3)若某户居民4月份用水立方米(其中6<
<10),请用含
的代数式表示应收水费.
(4)若某户居民5、6两个月共用水18立方米(6月份用水量超过了10立方米),设5月份用水立方米,请用含
的代数式表示该户居民5、6两个月共交水费多少元?