(本小题满分12分)某区组织群众性登山健身活动,招募了名师生志愿者,将所有志愿者现按年龄情况分为
等六个层次,其频率分布直方图如图所示: 已知
之间的志愿者共
人.
(Ⅰ)求和
之间的志愿者人数
;
(Ⅱ)已知和
之间各有
名英语教师,现从这两个层次各选取
人担任接待工作,设两组的选择互不影响,求两组选出的人选中都至少有1名英语教师的概率是多少?
(Ⅲ)组织者从之间的志愿者(其中共有
名女教师,其余全为男教师)中随机选取
名担任后勤保障工作,其中女教师的数量为
,求
的概率和分布列.
(本小题满分12分)已知函数
(1)求取得最大值时,
取值的集合与
最大值
(2)若,求
的值.
(本小题满分14分)如图所示,椭圆的左右焦点分别为
,点
为椭圆
与坐标轴的交点,其中
为等边三角形且面积为
.
(1)求椭圆C的标准方程;
(2)过椭圆C的右顶点A2作两条互相垂直的直线分别和椭圆交于另一点P,Q,试判断直线PQ是否过定点,若过定点,求出该定点的坐标;若不过定点,请说明理由.
(本小题满分14分)设正数数列的前n项和为
,且满足
(
)
(1)求证:是等差数列;
(2)设为数列{
}的前n项和,求
;
(3)设,证明:
.
(本小题满分14分) 如图所示,平面平面
,且四边形
为
正方形,,
∥
,
,
为
的中点.
(1)求证:∥平面
;
(2)求证:平面
;
(3)求平面与平面
所成锐二面角的余弦值.
(本小题满分12分)广东某高中进行高中生歌唱比赛,在所有参赛成绩中随机抽取名学生的成绩,按成绩分组:第
组
,第
组
,第
组
,第
组
,第
组
得到的频率分布直方图如图所示.现在组委会决定在笔试成绩高的第
组中用分层抽样抽取
名学生进入第二轮面试.
(1)求组各应该抽取多少人进入第二轮面试;
(2)学校决定在(1)中抽取的这6名学生中随机抽取2名学生接受考官D的面试,设第4组中有名学生被考官D面试,求
的分布列和数学期望.