如图所示,质量为为m、电量为q的带电粒子,
经电压为U加速,又经磁感应强度为B的匀强磁场后落到图中D点,求:
(1)带电粒子在A点垂直射入磁场区域时的速率v;
(2)A、D两点间的距离l。
(12分)如图所示,在倾角θ=37°的光滑斜面上存在一垂直斜面向上的匀强磁场区域MNPQ,磁感应强度B的大小为5T,磁场宽度d=0.55m,有一边长L=0.4m、质量m1=0.6kg、电阻R=2Ω的正方形均匀导体线框abcd通过一轻质细线跨过光滑的定滑轮与一质量为m2=0.4kg的物体相连,物体与水平面间的动摩擦因数μ=0.4,将线框从图示位置由静止释放,物体到定滑轮的距离足够长.(取g=10m/s2,sin37°=0.6,cos37°=0.8)求:
(1)线框abcd还未进入磁场的运动过程中,细线中的拉力为多少?
(2)当ab边刚进入磁场时,线框恰好做匀速直线运动,求线框刚释放时ab边距磁场MN边界的距离x多大?(3)在(2)问的条件下,若cd边恰好离开磁场边界PQ时,速度大小为2m/s,求整个过程中ab边产生的热量为多少?
如图所示,在竖直面内有两平行金属导轨AB、CD.导轨间距为L,电阻不计.一根电阻不计的金属棒ab可在导轨上无摩擦地滑动.棒与导轨垂直,并接触良好.导轨之间有垂直纸面向外的匀强磁场,磁感强度为B.导轨右边与电路连接.电路中的三个定值电阻阻值分别为2R、R和R.在BD间接有一水平放置的电容为C的平行板电容器,板间距离为d.
(1)当ab以速度v0匀速向左运动时,电容器中质量为m的带电微粒恰好静止.试判断微粒的带电性质和电容器的电量q
(2)ab棒由静止开始,以恒定的加速度a向左运动.讨论电容器中带电微粒的加速度如何变化.(设带电微粒始终未与极板接触.)
质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造原理如图所示.离子源S产生的各种不同正离子束(速度可看作为零),经加速电场(加速电场极板间的距离为d、电势差为U)加速,然后垂直进入磁感应强度为B的有界匀强磁场中做匀速圆周运动,最后到达记录它的照相底片P上.设离子在P上的位置与入口处S1之间的距离为x。
(1)求该离子的荷质比.
(2)若离子源产生的是带电量为q、质量为m1和m2的同位素离子(m1>m2),它们分别到达照相底片上的P1、P2位置(图中末画出),求P1、P2间的距离△x。
某物理小组在研究过山车原理的过程中,提出了下列的设想:取一个与水平方向夹角为37°、长为L=2.0m的粗糙的倾斜轨道AB,通过水平轨道BC与竖直圆轨道相连,出口为水平轨道DE,整个轨道除AB段以外都是光滑的。其中AB与BC轨道以微小圆弧相接,如图所示。一个小物块以初速度,从某一高处水平抛出,到A点时速度方向恰好沿AB方向,并沿倾斜轨道滑下。已知物块与倾斜轨道的动摩擦因数
(g取10m/s2,
)
(1)求小物块的抛出点和A点的高度差;
(2)要使小物块不离开轨道,并从水平轨道DE滑出,求竖直圆弧轨道的半径应该满足什么条件?
(3)为了让小物块不离开轨道,并且能够滑回倾斜轨道AB,则竖直圆轨道的半径应该满足什么条件?
(4)按照(3)问的要求,小物块进入轨道后可以有多少次通过圆轨道上距水平轨道高为0.01m的某一点。
如图所示,圆心为原点、半径为的圆将
平面分为两个区域,即圆内区域Ⅰ和圆外区域Ⅱ。区域Ⅰ内有方向垂直于
平面的匀强磁场。平行于x轴的荧光屏垂直于
平面,放置在直线
的位置。一束质量为
、电荷量为q、速度为
的带正电粒子从坐标为(
,0)的A点沿x轴正方向射入区域Ⅰ,粒子全部垂直打在荧光屏上坐标为(0,-2R)的
点。若区域Ⅱ中加上平行于x轴的匀强电场,从A点沿x轴正方向以速度2
射入区域Ⅰ的粒子垂直打在荧光屏上的N点。不考虑重力作用,求:
(1)在区域Ⅰ中磁感应强度B的大小和方向。
(2)在区域Ⅱ中电场的场强为多大?MN两点间距离是多少?