某班进行个人投篮比赛,有1人未进球,有2人各进一球,有7人各进2球,有2人各进5球,没有人进5球以上,小英和一些同学各进3球,小亮和一些同学各进4球.已知进球3个或3个以上的同学平均进3.5个球,进球4个或4个以下的同学平均每人进2.5个球,问进3个球和进4个球的人数各是多少?
如图,已知在半圆中,
,
,求
的长度.
解:
(1)解不等式组:(2)因式分解:
解:(1) 解:(2)
在科技馆里,小亮看见一台名为帕斯卡三角的仪器,如图所示,当一实心小球从入口落下,它在依次碰到每层菱形挡块时,会等可能地向左或向右落下.
(1)试问小球通过第二层位置的概率是多少?
(2)请用学过的数学方法模拟试验,并具体说明小球下落到第三层位置和第四层
位置处的概率各是多少?解:
|
下图是由权威机构发布的,在1993年4月~2005年4月期间由中国经济状况指标之一中国经济预警指数绘制的图表.
(1)请你仔细阅读图表,可从图表已知抛物线与x轴交于不同的两点
和
,与y轴交于点C,且
是方程
的两个根(
).
(1)求抛物线的解析式;
(2)过点A作AD∥CB交抛物线于点D,求四边形ACBD的面积;
(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作平行于x轴的直线l交BC于点Q,那么在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.