(本小题满分12分)学习小组有6个同学,其中4个同学从来没有参加过数学研究性学习活动,2个同学曾经参加过数学研究性学习活动.
(1)现从该小组中任选2个同学参加数学研究性学习活动,求恰好选到1个曾经参加过数学研究性学习活动的同学的概率;
(2)若从该小组中任选2个同学参加数学研究性学习活动,活动结束后,该小组没有参加过数学研究性学习活动的同学个数是一个随机变量,求随机变量
的分布列及数学期望
.
已知函数.
(Ⅰ)当时,判断函数
的奇偶性;
(Ⅱ)若不等式的解集为A,且
,求实数
的取值范围.
根据统计,组装第x件某产品(),甲工人所用的时间为
,乙工人所用的时间为
(
,
为常数)(单位:分钟).已知乙工人组装第4件产品用时15分钟,组装第
件产品用时10分钟.
(Ⅰ)求和
的值;
(Ⅱ)组装第x件某产品,甲工人的用时是否可能多于乙工人的用时?若可能,求出所有x的值;若不可能,请说明理由.
将一枚质地均匀的骰子连掷两次,记向上的点数分别为.
(Ⅰ)求事件“”的概率;
(Ⅱ)求事件“方程有实根”的概率.
为了估计某校的某次数学期末考试情况,现从该校参加考试的600名学生中随机抽出60名学生,其成绩(百分制)均在上.将这些成绩分成六段
,
,…,
后得到如下部分频率分布直方图.
(Ⅰ)求抽出的60名学生中分数在内的人数;
(Ⅱ)若规定成绩不小于85分为优秀,则根据频率分布直方图,估计该校的优秀人数.
.(本小题共13分)函数的定义域为R,数列
满足
(
且
).
(Ⅰ)若数列是等差数列,
,且
(k为非零常数,
且
),求k的值;
(Ⅱ)若,
,
,数列
的前n项和为
,对于给定的正整数
,如果
的值与n无关,求k的值.