用反证法证明命题:若整系数一元二次方程ax2+bx+c=0(a≠0)有有理数根,那么a、b、c中至少有一个是偶数时,下列假设中正确的是 ( )A假设a、b、c都是偶数 B假设a、b、c都不是偶数C假设a、b、c至多有一个偶数 D假设a、b、c至多有两个偶数
曲线在点处的切线方程为( )
不等式的解集为( )
设m, n是整数,则“m, n均为偶数”是“m+n是偶数”的( )
复数=( )
如图,点ABC都在⊙O上,过点C的切线交AB的延长线于点D,若AB=5,BC=3,CD=6,则线段AC的长为( )
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号