(本小题满分8分)
某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性
笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,
水性笔若干支(不少于4支).
(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;
(2)对的取值情况进行分析,说明按哪种优惠方法购买比较便宜;
(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.
在平行四边形ABCD中,E、F分别为对角线BD上的两点,且BE=DF.
(1)试说明四边形AECF是平行四边形;
(2)连结AC,当EF与AC满足 时,四边形AECF是菱形,依据是(不必证明)
(3)连结AC,当EF与AC满足 时,四边形AECF是矩形.依据是(不必证明)
将△ABC向右平移6格得到△,再将△
绕点
逆时针旋转90°得到△
,作出以上图形。
计算题(每题3分,共18分)
①②(
)2-
③
④ ⑤
⑥
如图,在梯形ABCD中,AD∥BC,AB=5,AD=6,DC=4,∠C=45º. 动点M从B点出发沿线段BC以每秒1个单位长度的速度向终点C运动;动点N同时从C点出发沿C→D→A运动,在CD上的速度为每秒个单位长度,在DA上的速度为每秒1个单位长度,当其中一个点到达终点是另一个点也随之停止运动.设运动的时间为t秒.
(1)求BC的长.
(2)当四边形ABMN是平行四边形时,求t的值.
(3)试探究:t为何值时,△ABM为等腰三角形.
强台风过境时,斜坡上一棵6m高的大树被刮断,已知斜坡中α=30º,大树顶端A与底部C之间为2m,求这棵大树的折断处与底部的距离BC?