如图9-1,已知ABCD是边长为4的正方形,E是CD边上的一个动点,连接AE,AE的延长线交BC的延长线于点P,连接PD.作△ADE的外接圆⊙O.设DE = x,PC = y.
(1)求y与x之间的函数关系式;
(2)若PD是⊙O的切线,求x的值.
(3)过点D作DF⊥AE,垂足为H,交⊙O于点F,直线AF交BC于点G(如图9-2).若x=2,则sin∠BAG的值是_________.
如图10-1,在△A B B′和△A C C′中,∠B A B′=∠C A C′=m°,AC=AC',AB=AB'.
(1)不添加辅助线的前提下,请写出图中满足旋转变换的两个三角形分别是:;旋转角度是°;
(2)线段BC、B'C'的数量关系是:;试求出BC、B'C'所在直线的夹角:;
(3)随着△ACC'绕点A的旋转,(2)的结论是否依然成立?请从图10-2、图10-3中任选一个证明你的结论;
(4)利用解决上述问题所获得的经验探索下面的问题:如图10-4,等边△ABC外一点D,且∠BDC=60°,连接AD,试探索线段AD、CD、BD的数量关系.
某商店1月份开始营业并盈利1500元,3月份盈利2160元.如果该商店每个月盈利的月增长率相同,求:(1)该商店月平均增长率;(2)该商店第一季度共盈利多少元?
按要求解下列两个方程:
(1)(配方法)(2)
(公式法)
某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量(件)与销售单价
(元)符合一次函数关系:
![]() |
… |
60 |
65 |
70 |
75 |
80 |
… |
![]() |
… |
60 |
55 |
50 |
45 |
40 |
… |
(1)求销售量与销售单价
的函数关系式;
(2)若该商场获得利润为元,试写出利润
与销售单价
之间的关系式;并求出销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
(3)若该商场获得利润不低于500元,试确定销售单价的范围.
如图12-1,已知直线y= -x+4交x轴于点A,交y轴于点B.
(1)写出A、B两点的坐标分别是:;
(2)设点P是射线y = x()上一点,点P的横坐标为t,M是OP的中点(O是原点),以PM为对角线作正方形PDME.正方形PDME与△OAB公共部分的面积为S,求S与t之间的函数关系式,并求S的最大值.(图12-2、12-3供你探索问题时使用)