已知椭圆的中心在原点、焦点在
轴上,抛物线
的顶点在原点、焦点在
轴上.小明从曲线
、
上各取若干个点(每条曲线上至少取两个点),并记录其坐标(
.由于记录失误,使得其中恰有一个点既不在椭圆
上,也不在抛物线
上,小明的记录如下:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
据此,可推断椭圆的方程为
若曲线在点
处的切线方程为
,则曲线
在点
处切线的方程为.
抛物线上一点
与该抛物线的焦点
的距离
,则点
的横坐标为.
为了测算如图阴影部分的面积,作一个边长为6的正方形将其包含在内,并向正方形内随机投掷800个点,已知恰有200个点落在阴影部分内,据此,可估计阴影部分的面积是
曲线C是平面内与两个定点和
的距离的积等于常数
的点的轨迹,给出下列三个结论:
①曲线C过坐标原点; ②曲线C关于坐标原点对称;
③若点P在曲线C上,则△的面积不大于
.
其中,所有正确结论的序号是____________.