下表是甲地到乙地两条线路的有关数据:
线路 |
绕路 |
直路 |
路程 |
300公里 |
180公里 |
过路费 |
30元 |
90元 |
(1)若小车的平均速度为80公里/小时,则小车走直路比走弯路节省多少时间?
(2)若小车每公里的油耗为升,按汽油价格为7.5元/升计算,
设走弯路的总费用为y1,走直路的总费用为y2,问x为何值时,所走哪条线路的总费用较少(总费用=过路费+油耗费);
(3)据道路管理部门统计:得到从甲地到乙地的五类不同油耗的小车平均每小时通过的车辆数,制成如图所示的频数分布直方图,请你估算每天早晨7点至晚上5点内这五类小车走直路比走弯路共节省多少升汽油.
已知抛物线与
轴交于
点,与
轴交于
,
两点,顶点
的纵坐标为
,若
,
是方程
的两根,且
.
(1)求,
两点坐标;
(2)求抛物线表达式及点坐标;
(3)在抛物线上是否存在着点,使△
面积等于四边形
面积的2倍,若存在,求出
点坐标;若不存在,请说明理由.
已知二次函数.
(1)求证:当时,二次函数的图像与
轴有两个不同交点;
(2)若这个函数的图像与轴交点为
,
,顶点为
,且△
的面积为
,求此二次函数的函数表达式.
已知抛物线与抛物线
在直角坐标系中的位置如图所示,其中一条与
轴交于
,
两点.
(1)试判断哪条抛物线经过,
两点,并说明理由;
(2)若,
两点到原点的距离
,
满足条件
,求经过
,
两点的这条抛物线的函数式.
下图是二次函数的图像,与
轴交于
,
两点,与
轴交于
点.
(1)根据图像确定,
,
的符号,并说明理由;
(2)如果点的坐标为
,
,
,求这个二次函数的函数表达式.
已知函数.
(1)求证:不论为何实数,此二次函数的图像与
轴都有两个不同交点;
(2)若函数有最小值
,求函数表达式.