(理)在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC
⊥平面ABC,SA=SC=2,M、N分别为AB、SB的中点。
(Ⅰ)证明:AC⊥SB;
(Ⅱ)求二面角N-CM-B的大小;
(Ⅲ)求点B到平面CMN的距离.
已知函数是在
上每一点处均可导的函数,若
在
上恒成立。
(1)①求证:函数在
上是增函数;
②当时,证明:
;
(2)已知不等式在
且
时恒成立,求证:
…
如图,在底面是直角梯形的四棱锥P—ABCD中,AD∥BC,∠DAB=90º,PA⊥平面ABCD,PA=AB=BC=1,AD=2,M是PD的中点。
(1)求证:MC∥平面PAB;
(2)在棱PD上求一点Q,使二面角Q—AC—D的正切值为。
已知数列、
满足:
,
,
。
(1)求数列的通项公式;
(2)若,求数列{
}的前n项和
。
已知函数
(1)求的单调区间以及极值;
(2)函数的图像是否为中心对称图形?如果是,请给出严格证明;如果不是,请说明理由。
设锐角△ABC的三内角A、B、C的对边分别为,向量
,
,且
与
共线。
(1)求角A的大小;
(2)若,
,且△ABC的面积小于
,求角B的取值范围。