(本小题满分12分)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,车流速度
是车流密度
的一次函数.
(Ⅰ)当时,求函数
的表达式;
(Ⅱ)当车流密度为多大时,车流量
(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)
可以达到最大,并求出最
大值.(精确到1辆/小时)
(本题8分)已知p:,q:
,若
是
的必要不充分条件,求实数m的取值范围。
(本题6分)已知函数。
(1)求在处的切线方程;
(2)求该切线与坐标轴所围成的三角形面积。
(本题6分)已知双曲线的中心在原点,焦点为F1,F2(—5 ,0),且过点(3,0),
(1)求双曲线的标准方程.
(2)求双曲线的离心率及准线方程。
如图,为半圆,AB为半圆直径,O为半圆圆心,且OD⊥AB,Q为线段OD的中点,已知|AB|=4,曲线C过Q点,动点P在曲线C上运动且保持|PA|+|PB|的值不变.
(1)建立适当的平面直角坐标系,求曲线C的方程;
(2)过D点的直线l与曲线C相交于不同的两点M、N,且M在D、N之间,设=λ,求λ的取值范围.
如图所示的多面体是由底面为的长方体被截面
所截面而得到的,其中
.
(Ⅰ)求的长;
(Ⅱ)求二面角E-FC1-C的余弦值.