(本小题满分12分)在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰。已知某选手能正确回答第一、二、三、四轮问题的概率分别为、
、
、
,且各轮问题能否正确回答互不影响。
(Ⅰ)求该选手进入第三轮才被淘汰的概率;
(Ⅱ)求该选手至多进入第三轮考核的概率;
如图,已知AB面ACD,DE
面ACD,
ACD为等边三角形,AD=DE=2AB,F为CD的中点,
(Ⅰ)求证:AF // 面BCE;
(Ⅱ)求二面角A-CE-D的正切值.
已知二次函数f(x)满足且
函数
(Ⅰ)求函数的解析式;
(Ⅱ)判断函数,在
上的单调性并加以证明.
在△ABC中,a、b、c分别是角A、B、C的对边,且.
(1)求角B的大小;
(2)若b=,a+c=4,求△ABC的面积.
已知函数.
(1)若函数为偶函数,求
的值;
(2)若,求函数
的单调递增区间;
(3)当时,若对任意的
,不等式
恒成立,求实数
的取值范围.
已知椭圆经过点
,离心率为
.
(1)求椭圆的方程;
(2)直线与椭圆
交于
两点,点
是椭圆
的右顶点.直线
与直线
分别与
轴交于点
,试问以线段
为直径的圆是否过
轴上的定点?若是,求出定点坐标;若不是,说明理由.