为继续进行旅游景区公共服务改造,某市今年预算用资金41万元在200余家A
级景区配备两种轮椅1100台,其中普通轮椅每台360元,轻便型轮椅每台500元.
(1) 若恰好全部用完预算资金,能购买两种轮椅各多少台?
(2) 由于获得了不超过4万元的社会捐助,问轻便型轮椅最多可以买多少台?
如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE、始终经过点A,EF与AC交于M点.
(1)求证:△ABE∽△ECM;
(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由.
如右上图,有一个面积为150平方米的长方形的鸡场,鸡场的一边靠墙(墙长18米),墙的对面有一个2米宽的门,另三边用竹篱笆围成,篱笆总长33米,求鸡场的长和宽各位多少米?
如图,在正方形网格中,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:
(1)将△ABC向右平移5个单位长度,画出平移后的△A1B1C1 ;
(2)画出△ABC关于x轴对称的△A2B2C2 ;
(3)将△ABC绕原点O 旋转180°,画出旋转后的△A3B3C3 ;
(1)计算:
(2)解方程:
如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点.
(1)求抛物线的解析式;
(2)已知AD=AB(D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个动点Q以某一速度从点B沿线段BC移动,经过t 秒的移动,线段PQ被BD垂直平分,求t的值;
(3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC的值最小?若存在,请求出点M的坐标;若不存在,请说明理由。
(注:抛物线的对称轴为
)