(8分)小亮与小明做投骰子(质地均匀的正方体)的实验与游戏.
(1)在实验中他们共做了50次试验,试验结果如下:
① 填空:此次实验中,“1点朝上”的频率是 ▲ ;
② 小亮说:“根据实验,出现1点朝上的概率最大.”他的说法正确吗?为什么?
(2)在游戏时两人约定:每次同时掷两枚骰子,如果两枚骰子的点数之和超过6,则小
亮获胜,否则小明获胜.则小亮与小明谁获胜的可能性大?试说明理由.
有A、B两个黑布袋,A布袋中有两个除标号外完全相同的小球,小球上分别标有2、3.B布袋中也有两个除标号外完全相同的小球,小球上分别标有1、2.小明先从A布袋中随机取一个小球,用a表示取出的小球上标有的数字,再从B布袋中取出一个小球,用b表示取出的球上标有的数字.
(1)请你用画树形图法或列表法求出a与b的积为奇数的概率.
(2)关于x的一元二次方程x2-ax+b=0有实数根的概率为(直接写出答案).
如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AC、ED的中点,连接DO并延长到点E,使OE=OD,连接AE,CE.
(1)求证:四边形AECD是矩形;
(2)当△ABC满足什么条件时,矩形AECD是正方形,并说明理由.
已知关于x的方程x2+ax+a-2=0
(1)若该方程的一个根为1,求a的值及该方程的另一根;
(2)求证:不论a取何实数,该方程都有两个不相等的实数根.
解下列方程:
(1)x(x-3)=10(2)(2x-1)2-x2=0
如图,二次函数的图像与x轴交于点A,B.点M、N在x轴上,点N在点M右侧,MN=2.以MN为直角边向上作等腰直角三角形CMN,∠CMN=90°.设点M的横坐标为m.
(1)当点C在这条抛物线上时,求m的值.
(2)将线段CN绕点N逆时针旋转90°后,得到对应线段DN.
①当点D在这条抛物线的对称轴上时,求点D的坐标.
②以DN为直角边作等腰直角三角形DNE,当点E在这条抛物线的对称轴上时,求m的值.