游客
题文

求下列各式中 x的值 (每题4分,共8分)  
(1)3x2-27=0;                       (2)2(x-1) 3=16.

科目 数学   题型 计算题   难度 中等
知识点: 一元二次方程的最值
登录免费查看答案和解析
相关试题

先化简,再求值: ( 2 m + 1 m - 1 ) ÷ m 2 - 1 m ,其中 m = 3 + 1

解方程组: x + y = 1 4 x + y = 10

(回顾)

如图1, ΔABC 中, B = 30 ° AB = 3 BC = 4 ,则 ΔABC 的面积等于   

(探究)

图2是同学们熟悉的一副三角尺,一个含有 30 ° 的角,较短的直角边长为 a ;另一个含有 45 ° 的角,直角边长为 b ,小明用两副这样的三角尺拼成一个平行四边形 ABCD (如图 3 ) ,用了两种不同的方法计算它的面积,从而推出 sin 75 ° = 6 + 2 4 ,小丽用两副这样的三角尺拼成了一个矩形 EFGH (如图 4 ) ,也推出 sin 75 ° = 6 + 2 4 ,请你写出小明或小丽推出 sin 75 ° = 6 + 2 4 的具体说理过程.

(应用)

在四边形 ABCD 中, AD / / BC D = 75 ° BC = 6 CD = 5 AD = 10 (如图5)

(1)点 E AD 上,设 t = BE + CE ,求 t 2 的最小值;

(2)点 F AB 上,将 ΔBCF 沿 CF 翻折,点 B 落在 AD 上的点 G 处,点 G AD 的中点吗?说明理由.

如图,在平面直角坐标系中,矩形 OABC 的边 OA OC 分别在 x 轴、 y 轴上,点 B 坐标为 ( 4 t ) ( t > 0 ) ,二次函数 y = x 2 + bx ( b < 0 ) 的图象经过点 B ,顶点为点 D

(1)当 t = 12 时,顶点 D x 轴的距离等于   

(2)点 E 是二次函数 y = x 2 + bx ( b < 0 ) 的图象与 x 轴的一个公共点(点 E 与点 O 不重合),求 OE · EA 的最大值及取得最大值时的二次函数表达式;

(3)矩形 OABC 的对角线 OB AC 交于点 F ,直线 l 平行于 x 轴,交二次函数 y = x 2 + bx ( b < 0 ) 的图象于点 M N ,连接 DM DN ,当 ΔDMN ΔFOC 时,求 t 的值.

如图1,一次函数 y = - x + b 与反比例函数 y = k x ( k 0 ) 的图象交于点 A ( 1 , 3 ) B ( m , 1 ) ,与 x 轴交于点 D ,直线 OA 与反比例函数 y = k x ( k 0 ) 的图象的另一支交于点 C ,过点 B 作直线 l 垂直于 x 轴,点 E 是点 D 关于直线 l 的对称点.

(1) k =    

(2)判断点 B E C 是否在同一条直线上,并说明理由;

(3)如图2,已知点 F x 轴正半轴上, OF = 3 2 ,点 P 是反比例函数 y = k x ( k 0 ) 的图象位于第一象限部分上的点(点 P 在点 A 的上方), ABP = EBF ,则点 P 的坐标为 (      )

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号