如图,在梯形ABCD中,AD∥BC,∠B是直角,AB=14 cm,AD=18 cm.BC=21 cm,点P从点A出发,沿边AD向点D以1 cm/s的速度移动,点Q从点C出发沿边CB向点B以9cm/s的速度移动,若有一点运动到端点时,另一点也随之停止.如果P、Q同时出发,能否有四边形PQCD成等腰梯形?如果存在,求经过几秒后四边形PQCD成等腰梯形;如果不存在,请说明理由.(本题9分)
已知点A(a,2014)与点B(2015,b)关于x轴对称,则a+b的值为()
如图,在四边形ABCD中,AB=DC,延长线段CB到E,使BE=AD,连接AE、AC,且AE=AC.
求证:(1)△ABE≌△CDA;
(2)AD∥EC.
△ABC在平面直角坐标系xOy中的位置如图所示.
(1)作△ABC关于y轴成轴对称的△A1B1C1;
(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2;则此三角形的面积为 .
(3)在x轴上求作一点P,使PA1+PC2的值最小,点P的坐标为 .
(每小题3分,共6分)求下列各式中的x.
(1)(2)
.
某乡组织20辆汽车装运A、B、C三个品种的苹果42吨到外地销售。按规定每辆车只装同一品种苹果,且必须装满。每一个品种苹果不少于2车。
苹果品种 |
A |
B |
C |
每辆汽车运载量(吨) |
2.2 |
2.1 |
2 |
每吨苹果获利(百元) |
6 |
8 |
5 |
(1)设x辆车装运A种苹果,用y辆车装运B种苹果,根据上表提供的信息,求x与y间的函数关系式,并求x的取值范围;
(2)设此次外销活动的利润为 w (百元),求w与x的函数关系式以及最大利润,并写出相应的车辆分配方案。