(本小题满分12分)一个盒子中装有5张卡片,每张卡片上写有一个数字,数字分别是1、2、3、4、5,现从盒子中随机抽取卡片。
(1)从盒中依次抽取两次卡片,每次抽取一张,取出的卡片不放回,求两次取到的卡片的数字既不全是奇数,也不全是偶数的概率;
(2)若从盒子中有放回的抽取3次卡片,每次抽取一张,求恰有两次取到卡片的数字为偶数的概率;
(3)从盒子中依次抽取卡片,每次抽取一张,取出的卡片不放回,当放回记有奇数的卡片即停止抽取,否则继续抽取卡片,求抽取次数X的分布列和期望。
(满分12分) 已知函数.
(1)若,求
的值;
(2)求的单调增区间.
(本小题满分14分)
已知等差数列{an}中,a1=-1,前12项和S12=186.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足,记数列{bn}的前n项和为Tn,
求证: (n∈N*).
(本小题满分14分)
已知函数
(Ⅰ)当求函数
的最小值;
(Ⅱ)若对任意,都有
>0恒成立,试求实数a的取值范围.
(本小题满分14分)
如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(Ⅰ) 证明:BC1//平面ACD1;
(Ⅱ)证明:A1D⊥D1E;
(Ⅲ) 当E为AB的中点时,求点E到面 ACD1的距离.
(本小题满分14分)
已知有
(1)判断的奇偶性;
(2)若时,
证明:
在
上为增函数;
(3)在条件(2)下,若,解不等式: