游客
题文

小芸在为班级办黑板报时遇到了一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助她设计一个合理的等分方案.要求用尺规作出图形,保留作图痕迹,并简要写出作法.

科目 数学   题型 解答题   难度 中等
知识点: 圆幂定理
登录免费查看答案和解析
相关试题

阅读下面材料,再回答问题:
有一些几何图形可以被某条直线分成面积相等的两部分,我们将“把一个几何图形分成面积相等的两部分的直线叫做该图形的二分线”,如:圆的直径所在的直线是圆的“二分线”,正方形的对角线所在的直线是正方形的“二分线”。
解决下列问题:
(1)菱形的“二分线”可以是
(2)三角形的“二分线”可以是
(3)在下图中,试用两种不同的方法分别画出等腰梯形ABCD的“二分线”.

如图,已知直线y =-x+4与反比例函数的图象相交于点A(-2,a),并且与x轴相交于点B。

(1)求a的值;
(2)求反比例函数的表达式;
(3)求△AOB的面积。

阅读探索:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)
(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:
设所求矩形的两边分别是,由题意得方程组:
消去y化简得:
∵△=49-48>0,∴x1=x2=
∴满足要求的矩形B存在.
(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.
(3)如果矩形A的边长为mn,请你研究满足什么条件时,矩形B存在?

正比例函数和反比例函数的图象相交于A,B两点,已知点A的横坐标为1,纵坐标为

(1)写出这两个函数的表达式;
(2)求B点的坐标;
(3)在同一坐标系中,画出这两个函数的图象.

已知:如图,D是△ABC中BC边上一点,E是AD上的一点, EB=EC,∠1=∠2.

求证:AD平分∠BAC.
证明:在△AEB和△AEC中,

∴△AEB≌△AEC(第一步)
∴∠BAE="∠CAE" (第二步)
∴ AD平分∠BAC(第三步)
问:上面证明过程是否正确?若正确,请写出题中标出的每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号