如图,、
两座城市相距100千米,现计划在这两座城市之间修筑一条高等级公路(即线段
)。经测量,森林保护区中心
点在
城市的北偏东30°方向,
城市的北偏西45°方向上,已知森林保护区的范围在以
为圆心,50千米为半径的圆形区域内。请问:计划修筑的这条高等级公路会不会穿越保护区,为什么?
(本小题10 分),某园林部门决定利用现有的349盆甲种花卉和295盆乙种花卉搭配A、B两种园艺造型共50个,摆放在迎宾大道两侧.已知搭配一个A种造型需甲种花卉8盆,乙种花卉4盆;搭配一个B种造型需甲种花卉5盆,乙种花卉9盆.
(l)某校九年级某班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;
(2)若搭配一个A种造型的成本是200元,搭配一个B种造型的成本是360元,试说明(1)中哪种方案成本最低,最低成本是多少元?
(本小题 9 分)某课题组为了解全市九年级学生对数学知识的掌握情况,在一次数学检测中,从全市 20000 名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:
(1)表中和
所表示的数分别为:
=_______________,
=_______________;
(2)请在图中补全额数分布直方图;
(3)如果把成绩在70分以上(含70分)定为合格,那么该市20000名九年级考生数学成绩为合格的学生约有多少名?
(本小题 10 分)如图,在 Rt△ABC中,∠ACB=90D是AB 边上的一点,以BD为直径的⊙0与边 AC 相切于点E,连结DE并延长,与BC的延长线交于点 F .
( 1 )求证: BD =" BF" ;
( 2 )若 BC =" 12" , AD =" 8" ,求 BF 的长.
如图(图1、图2),四边形ABCD是边长为4的正方形,点E在线段BC上,∠AEF=90°,且EF交正方形外角平分线CP于点F,FN⊥BC,交BC的延长线于点N。
(1)若点E是BC的中点(如图1),AE与EF相等吗?为什么?
(2)点E在BC间运动时(如图2),设BE=x,△ECF的面积为y。
①求y与x的函数关系式;
②当x取何值时,y有最大值,并求出这个最大值。
如图,直线y=x+3与坐标轴分别交于A、B两点,抛物线经过点A、B,顶点为C,连结CB并延长交x轴于点E,点D与点B关于抛物线的对称轴MN对称。
(1)求抛物线的解析式及顶点C的坐标;
(2)求证:四边形ABCD是直角梯形。