如图所示,将矩形沿
折叠,使点
恰好落在
上
处,以
为边作正方形
,延长
至
,使
,再以
、
为边作矩形
.
(1). 试比较、
的大小,并说明理由.
2)令,请问
是否为定值?若是,请求出
的值;若不是,请说明理由.
3在(2)的条件下,若为
上一点且
,抛物线
经过
、
两点,请求出此抛物线的解析式.
(4).在(3)的条件下,若抛物线与线段
交于点
,试问在直线
上是否存在点
,使得以
、
、
为顶点的三角形与
相似?若存在,请求直线
与
轴的交点
的坐标;若不存在,请说明理由.
已知圆锥的底面直径是8,母线长是16,求它的侧面展开图的圆心角与圆锥的全面积.
如图,已知每个小正方形的边长为1cm,O、A、B都在小正方形顶点上,扇形OAB是某个圆锥的侧面展开图.
(1)计算这个圆锥侧面展开图的面积;
(2)求这个圆锥的底面半径.
如图,已知在⊙O中,AB=4,AC是⊙O的直径,AC⊥BD于F,∠A=30°.
(1)求图中阴影部分的面积;
(2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.
(3)试判断⊙O中其余部分能否给(2)中的圆锥做两个底面.
如图,一只纺锤可近似看作由两个圆锥拼合而成,AB=18,AD=9,r=3.
(1)求纺锤的表面积;
(2)一只蚂蚁要从C点出发绕这只纺锤爬一圈回到原地,求蚂蚁爬过的最短路线长.
如图,在△ABC中,AB=AC=10,CB=16,分别以AB、AC为直径作半圆,都经过BC的中点D.则图中阴影部分面积是.