(本小题满分15分)如图1,抛物线经过点A和点B.已知点A的坐标是(2,4),点B的横坐标是-2.
(1)求的值及点B的坐标;
(2)设点D为线段AB上的一个动点,过D作x轴的垂线,垂足为点H.在DH的右侧作等边△DHG. 将过抛物线顶点M的直线记为,设
与x轴交于点N.
① 如图1,当动点D的坐标为(1,2)时,若直线过△DHG的顶点G.求此时点N的横坐标是多少?
② 若直线与△DHG的边DG相交,试求点N横坐标的取值范围.
(本题10分)在平行四边形ABCD中,点E、F分别在AB、CD上,且AE=CF.
(1)求证:△ADE≌△CBF;
(2)若DF=BF,试判定四边形DEBF是何种特殊四边形?并说明理由.
(本题8分)已知,实数,
,
在数轴上的位置如图所示,化简:
.
(本题10分)2014年我区正在推进的旅游产业中,对外宣传的优秀景点有:A:溱湖湿地公园;B:姜堰生态园;C:溱潼老街;D:北大街古文化区;E:“全球500佳”河横.区旅游管理部门对某月进入景点的人数情况调查统计,制成了两幅不完整的统计图(如图).
(1)求出这个月进入我区上述五个景点的总人数;
(2)请你补全频数分布直方图;
(3)求出扇统计图中A,溱湖湿地公园所对应的扇的圆心角的度数.
(本题10分)
(1)解分式方程:;
(2)先化简,再求值:,其中
.
(本题10分)解下列一元二次方程:
(1)(用公式法解);(2)
.