(本小题满分12分)
某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止.令ξ表示走出迷宫所需的时间
(1)求走出迷宫时恰好用了l小时的概率
(2)求ξ的分布列和数学期望
已知函数 =│ x+1│-│ x-2│.
(1)求不等式 ≥1的解集;
(2)若不等式 ≥ x 2- x+ m的解集非空,求实数 m的取值范围.
在直角坐标系xOy中,直线l1的参数方程为 (t为参数),直线l2的参数方程为 .设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.
(1)写出C的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设 ,M为l3与C的交点,求M的极径.
已知函数 .
(1)若 ,求a的值;
(2)设m为整数,且对于任意正整数n, ,求m的最小值.
已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.
(1)证明:坐标原点O在圆M上;
(2)设圆M过点 ,求直线l与圆M的方程.
如图,四面体 ABCD中, 是正三角形, 是直角三角形, .
(1)证明: ;
(2)过 AC的平面交 BD于点 E,若平面 AEC把四面体 ABCD分成体积相等的两部分,求二面角 的余弦值.