(本小题满分12分)已知的角A、B、C所对的边分别是
,
设向量,
,
(Ⅰ)若∥
,求证:
为等腰三角形;
(Ⅱ)若⊥
,边长
,
,求
的面积.
(本小题满分12分)已知函数
(Ⅰ)求的最小正周期;
(Ⅱ)求在区间
上的最大值和最小值.
(本题12分)已知椭圆的左、右焦点分别为F1、F2,其中F2也是抛物线
的焦点,M是C1与C2在第一象限的交点,且
(I)求椭圆C1的方程;(II)已知菱形ABCD的顶点A、C在椭圆C1上,顶点B、D在直线上,求直线AC的方程。
(本题12分)在直角梯形PBCD中,,A为PD的中点,如下左图。将
沿AB折到
的位置,使
,点E在SD上,且
,如下图。
(1)求证:平面ABCD;
(2)求二面角E—AC—D的正切值.
(本题12分)在平面直角坐标系O
中,直线
与抛物线
=2
相交于A、B两点。
(1)求证:命题“如果直线过点T(3,0),那么
=3”是真命题;
(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由。