迎接大运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.
(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.
(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?
解方程:
(1)x(x-2)=x-2;
(2)(x+8)(x+1)=-12.
如图,抛物线y=ax2+bx+c经过原点,与x轴相交于点E(8,0),抛物线的顶点A在第四象限,点A到x轴的距离AB=4,点P(m,0)在线段OB上,连结PA,将线段PA绕点P逆时针旋转90°得到线段PC,过点C作y轴的平行线交x轴于点G,交抛物线于点D,连结BC和AD.
(1)求抛物线的解析式;
(2)求点C的坐标(用含m的代数式表示);
(3)当四边形ABCD是平行四边形时,求点P的坐标.
如图①,已知四边形ABCD是正方形,点E是AB的中点,点F在边CB的延长线上,且BE=BF,连接EF.
(1)若取AE的中点P,求证:;
(2)在图①中,若将△BEF绕点B顺时针方向旋转(
<
<
),如图②,是否存在某位置,使得AE∥BF,若存在,求出所有可能的旋转角
的大小;若不存在,请说明理由;
已知:如图所示,在Rt△ABC中,,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E,且
.判断直线BD与⊙O的位置关系,并证明你的结论.
如图,有一个长为24米的篱笆,一面有围墙(墙的最大长度为10米)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S米2.
(1)求S与x的函数关系式及x的取值范围.
(2)如果要围成的花圃ABCD的面积是45平方米,则AB的长为多少米?