(10分)恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.
(1)若存放天后,将这批香菇一次性出售,设这批香菇的销售总金额为
元,试写出
与
之间的函数关系式.
(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)
(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?
先化简,再求值: ,其中 是不等式组 的整数解.
计算: .
如图,已知二次函数的图象顶点在原点,且点 在二次函数的图象上,过点 作 轴的平行线交二次函数的图象于 、 两点.
(1)求二次函数的表达式;
(2) 为平面内一点,当 是等边三角形时,求点 的坐标;
(3)在二次函数的图象上是否存在一点 ,使得以点 为圆心的圆过点 和点 ,且与直线 相切.若存在,求出点 的坐标,并求 的半径;若不存在,说明理由.
如图,已知 是 的直径,点 是圆上异于 、 的一点,连结 并延长至点 ,使 ,连结 交 于点 ,连结 .
(1)求证: 是等腰三角形;
(2)连结 并延长,与以 为切点的切线交于点 ,若 , ,求 的长.
如图,一次函数 的图象与反比例函数 的图象相交于点 , 两点,过点 作 于点 .
(1)求一次函数和反比例函数的表达式;
(2)求四边形 的面积.