勾股定理有着悠久的历史,它曾引起很多人的兴趣.l955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理.在右图的勾股图中,已知∠ACB=90°,∠BAC=30°,AB= 4.作△PQR使得∠R=90°,点H在边QR上,点D,E在边PR上,点G,F在边_PQ上,那么APQR的周长等于 ▲
如图,梯形ABCD中,AD∥BC,∠C=900 ,AB=AD=4,BC=6,以A为圆心在梯形内画出一个最大的扇形(图中阴影部分)的面积是
在16×6的网格图中(每个小正方形的边长均为1个单位长),⊙A的半径为1,⊙B的半径为2,要使⊙A与静止的⊙B相切,那么⊙A由图示位置需向右平移个单位长.
如图,AB与⊙O相切于点B,AO延长线交⊙O点C,连接BC,若∠A=38°,则∠C=。
同时掷二枚普通的骰子,数字和为l的概率为,数字和为7的概率为,数字和为2的概率为.
比较大小:8 (填“<”、“=”或“>” )
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号