如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=
经过点C,交y轴于点G,且∠AGO=30°。
(1)点C、D的坐标分别是C( ),D( );
(2)求顶点在直线y=上且经过点C、D的抛物线的解析式;
(3)将(2)中的抛物线沿直线y=平移,平移后的抛物线交y轴于点F,顶点为点E。平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存
在,请求出此时抛物线的解析式;若不存在,请说明理由。
已知二次函数的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3)。
(1)求出b,c的值,并写出此二次函数的解析式;
(2)根据图象,写出函数值y为正数时,自变量x的取值范围
如图,在平面直角坐标系中,四边形ABCD的四个顶点的坐标分别是A(1,3)、
B(2,2)、C(2,1),D(3,3).
(1)以原点O为位似中心,相似比为2,将图形放大,画出符合要求的位似四边形;
(2)在(1)的前提下,写出点A的对应点坐标A′
如图10-1,在平面直角坐标系中,点
在
轴的正半轴上, ⊙
交
轴于
两点,交
轴于
两点,且
为
的中点,
交
轴于
点,若点
的坐标为(-2,0),
(1)(3分)求点的坐标.
(2)(3分)连结,求证:
∥
(3)(4分) 如图10-2,过点作⊙
的切线,交
轴于点
.动点
在⊙
的圆周上运动时,
的比值是否发生变化,若不变,求出比值;若变化,说明变化规律
如图9,抛物线与
轴交于
、
两点(点
在点
的左侧),抛物线上另有一点
在第一象限,满足∠
为直角,且恰使△
∽△
.
(1)(3分)求线段的长.
(2)(3分)求该抛物线的函数关系式.
(3)(4分)在轴上是否存在点
,使△
为等腰三角形?若存在,求出所有符合条件的
点的坐标;若不存在,请说明理由.
工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.
(1)(4分)该工艺品每件的进价、标价分别是多少元?
(2)(4分)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100 件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?