(本小题满分12分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系: =若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和.(1)求的值及的表达式;(2)隔热层修建多厚时,总费用达到最小,并求最小值.
(满分14分)已知是定义在R上的奇函数,且当时,. (Ⅰ)求的解析式; (Ⅱ)问是否存在这样的正数a, b使得当时,函数的值域为,若存在,求出所有a, b的值,若不存在,说明理由.
(满分14分)已知函数(a为常数)是奇函数. (Ⅰ)求a的值与函数的定义域; (Ⅱ)若当时,恒成立.求实数的取值范围.
(满分14分)已知集合. (Ⅰ)若; (Ⅱ)若,求实数a.
(满分12分)已知(Ⅰ)判断的奇偶性;(Ⅱ)求的值域.
(满分12分)计算:(Ⅰ) (Ⅱ)已知(其值用表示)
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号