已知二次函数的图象过点(1,13),且函数
是偶函数.
(1)求的解析式;
(2)已知,
,求函数
在[
,2]上的最大值和最小值;
(3)函数的图象上是否存在这样的点,其横坐标是正整数,纵坐标是一个完全平方数?如果存在,求出这样的点的坐标;如果不存在,请说明理由.
已知椭圆的中心为坐标原点O,焦点在x轴上,过椭圆右焦点F2且斜率为1的直线交椭圆于A、B两点,弦AB的中点为T,OT的斜率为,
(1)求椭圆的离心率;
(2)设Q是椭圆上任意一点,F1为左焦点,求的取值范围;
(3)若M、N是椭圆上关于原点对称的两个点,点P是椭圆上任意一点,当直线PN斜率,试求直线PM的斜率
的范围。
同时投掷两个骰子,计算下列事件的概率:
(1)事件A:两个骰子点数相同;
(2)事件B:两个骰子点数之和是4的倍数;
(3)事件C:两个骰子点数之差是2 。
下表是某小卖部5天卖出热茶的杯数与当天气温的对比表:
气温/℃ |
26 |
18 |
13 |
10 |
3 |
杯数 |
20 |
24 |
34 |
38 |
54 |
(1)请求出线性回归直线方程;
(2)如果某天的气温是-5℃时,预测这天小卖部卖出热茶的杯数。
(求线性回归方程系数公式,
)
为了让学生了解更多“奥运会”知识,某中学举行了一次“奥运知识竞赛”,共有800名学生参加了这次竞赛,为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据表中信息,解答下列问题:
分组 |
频数 |
频率 |
60.5~70.5 |
0.16 |
|
70.5~80.5 |
10 |
|
80.5~90.5 |
18 |
0.36 |
90.5~100.5 |
||
合计 |
50 |
(1)若用系统抽样的方法抽取容量为50的一个样本,则每小组应为多少人?
(2)填充频率分布表的空格(将答案直接填在表格内) ,并作出频率分布直方图;
(3)试估计参加这次竞赛的学生的平均成绩。
如图所示,已知动圆C与半径为2的圆F1外切,与半径为8的圆F2内切,且F1F2=6,
(1)求证:动圆圆心C的轨迹是椭圆;
(2)建立适当直角坐标系,求出该椭圆的方程。