如图1, 中,点 , , 分别在边 , , 上, ,点 在线段 上, , , .
(1)填空:与 相等的角是 ;
(2)用等式表示线段 与 的数量关系,并证明;
(3)若 , (如图 ,求 的值.
如图, 中, , , ,点 从点 出发,沿边 以 的速度向终点 运动,过点 作 ,交边 (或 于点 .设点 的运动时间为 , 的面积为 .
(1)当点 与点 重合时,求 的值;
(2)求 关于 的函数解析式,并直接写出自变量 的取值范围.
甲、乙两个探测气球分别从海拔 和 处同时出发,匀速上升 .如图是甲、乙两个探测气球所在位置的海拔 (单位: 与气球上升时间 (单位: 的函数图象.
(1)求这两个气球在上升过程中 关于 的函数解析式;
(2)当这两个气球的海拔高度相差 时,求上升的时间.
四边形 内接于 , 是 的直径, .
(1)如图1,求证 ;
(2)过点 作 的切线,交 延长线于点 (如图 .若 , ,求 的长.
某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?