如图,ABDO是处于竖直平面内的光滑轨道,AB是半径为R=15m的1/4圆周轨道,半径OA处于水平位置,BDO是直径为15m的半圆轨道,D为BDO轨道的中央,一个小球P从A点的正上方距水平半径OA高H处自由落下,沿竖直平面内的轨道通过D点时对轨道的压力等于其重力的倍,取g=10m/s2.
H的大小等于多少?
试讨论此球能否到达BDO轨道的O点,并说明理由。
小球沿轨道运动后再次落到轨道上前瞬间的速度大小是多少?
如图所示,相距为d、板间电压为U的平行金属板M、N间有垂直纸面向里、磁感应强度为B0的匀强磁场;在pOy区域内有垂直纸面向外磁感应强度为B的匀强磁场;pOx区域为无场区.一正离子沿平行于金属板、垂直磁场射入两板间并做匀速直线运动,从H(0,a)点垂直y轴进入第Ⅰ象限.求离子在平行金属板间的运动速度;
若离子经Op上某点离开磁场,最后垂直x轴离开第Ⅰ象限,求离子在第Ⅰ象限磁场区域的运动时间;
要使离子一定能打在x轴上,则离子的荷质比
应满足什么条件?
如图所示,光滑水平面上静止放着长L=1.6m,质量为M=3kg的木块(厚度不计),一个质量为m=1kg的小物体放在木板的最右端,m和M之间的动摩擦因数μ=0.1,今对木板施加一水平向右的拉力F,(g取10m/s2)如果拉力F=10N恒定不变,求小物体离开木板时的动能大小?
为使物体与木板不发生滑动,F不能超过多少?
如图,A、B两点所在的圆半径分别为r1和r2,这两个圆为同心圆,圆心处有一带正电为+Q的点电荷,内外圆间的电势差为U。一电子仅在电场力作用下由A运动到B,电子经过B点时速度为v。若电子质量为m,带电量为e。求:电子经过B点时的加速度大小。
电子在A点时的速度大小v0。
如图所示,一质量为m、电荷量为q、重力不计的微粒,从倾斜放置的平行电容器I的A板处由静止释放,A、B间电压为U1。微粒经加速后,从D板左边缘进入一水平放置的平行板电容器II,由C板右边缘且平行于极板方向射出,已知电容器II的板长为板间距离的2倍。电容器右侧竖直面MN与PQ之间的足够大空间中存在着水平向右的匀强磁场(图中未画出),MN与PQ之间的距离为L,磁感应强度大小为B。在微粒的运动路径上有一厚度不计的窄塑料板(垂直纸面方向的宽度很小),斜放在MN与PQ之间,=45°。求:
微粒从电容器I加速后的速度大小;
电容器IICD间的电压;
假设粒子与塑料板碰撞后,电量和速度大小不变、方向变化遵循光的反射定律,碰撞时间极短忽略不计,微粒在MN与PQ之间运动的时间和路程。
质量为M=1kg足够长的木板放在水平地面上,木板左端放有一质量为m=1kg大小不计的物块,木板与地面间的动摩擦因数μ1=0.1,物块与木板间的动摩擦因数μ2=0.3。开始时物块和木板都静止,现给物块施加一水平向右的恒力F=6N,当物块在木板上滑过1m的距离时,撤去恒力F。(设最大静摩擦力与滑动摩擦力大小相等,取g=10m/s2)求力F做的功;
求整个过程中长木板在地面上滑过的距离。