长方形纸片EFGH可以绕着长方形纸片ABCD上的点O自由的旋转,当边EH与AB相交时,形成了∠1,∠2,求∠1+∠2的度数。(长方形的每个角都是直角且对边平行)
二次函数y=ax2+bx+c过点A、B两点(A左B右),且分布在y轴两侧,且OA、OB的长是方程x2﹣5x+4=0的两根,且OA>OB,与y轴交于点C(0,4).
(1)求4a﹣2b+c的值;
(2)连接AC、BC,P是线段AB上一动点,且AP=m,过点P作PM∥AC,交BC于M,当m为何值时,S△PCM的面积最大,并求出这个最大值;
(3)△ABC外接圆的面积是.(直接写出答案,结果保留π)
在如图所示的平面直角坐标系中,已知点A(2,4),B(4,2).
(1)在平面直角坐标系中,我们把横坐标、纵坐标都为整数的点称为整数点,请在第一象限内求作一个整数点C,使得AC=BC,且AC的长为小于4的无理数,则C点的坐标是,△ABC的面积是;
(2)试求出△ABC外接圆的半径.
如图,圆O是Rt△ABC的外接圆,点D是劣弧AC上异于A,C点的一点,连接AD并延长交BC的延长线于点E.
(1)求证:△BDE∽△ACE;
(2)若AB=BE=10,CE=3,则AD的长是多少?
(3)若CD∥AB,过点A作AF∥BC交CD的延长线于点F,则=.(请直接写出答案)
已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.
(1)求证:AH=2OM;
(2)若∠BAC=60°,求证:AH=AO.(初二)
如图,△ABC是⊙O的内接三角形,AC=BC,D为⊙O中上一点,延长DA至点E,使CE=CD.
(1)求证:AE=BD;
(2)若AC⊥BC,求证:.