某一中学位于东西方向的一条路上,一天我们学校的李老师出校门去家访,他先向东走100米到聪聪家,再向西走150米到青青家,再向东走200米到刚刚家,请问: 聪聪家与刚刚家相距多远?
如果把这条路看作一条数轴,以向东为正方向,以校门口为原点,请你在这条数轴上标出他们家与学校的大概位置(数轴上50米表示单位1).
聪聪家向西210米所表示的数是多少?
你认为可用什么办法求数轴上两点之间的距离?
图是某市一处十字路口立交桥的横断面在平面直角坐标系中的示意图,横截面的地平线为轴,横断面的对称轴为
轴,桥拱的
部分为一段抛物线,顶点
的高度为
,
和
是两侧高为
的支柱,
和
为两个方向的汽车通行区,宽都为
,线段
和
为两段对称的上桥斜坡,其坡度为
(即
).
(1)求桥拱所在抛物线的函数表达式.
(2)和
为支撑斜坡的立柱,其高都为
,为相应的
和
两个方向的行人及非机动车通行区,试求
和
的宽.
(3)按规定,汽车通过桥下时,载货最高处和桥拱间的距离不得小于,今有一大型运货汽车,装载某大型设备后,其宽为
,设备的顶部与地面距离为
,它能否从
(或
)区域安全通过,请说明理由.
一元二次方程的两根为
,
,且
,点
在抛物线
上,求点
关于抛物线的对称轴对称的点的坐标.
已知抛物线与
轴交于
点,与
轴交于
,
两点,顶点
的纵坐标为
,若
,
是方程
的两根,且
.
(1)求,
两点坐标;
(2)求抛物线表达式及点坐标;
(3)在抛物线上是否存在着点,使△
面积等于四边形
面积的2倍,若存在,求出
点坐标;若不存在,请说明理由.
已知二次函数.
(1)求证:当时,二次函数的图像与
轴有两个不同交点;
(2)若这个函数的图像与轴交点为
,
,顶点为
,且△
的面积为
,求此二次函数的函数表达式.
已知抛物线与抛物线
在直角坐标系中的位置如图所示,其中一条与
轴交于
,
两点.
(1)试判断哪条抛物线经过,
两点,并说明理由;
(2)若,
两点到原点的距离
,
满足条件
,求经过
,
两点的这条抛物线的函数式.