设F1、F2分别为椭圆C:
=1(a>b>0)的左、右焦点,过F2的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,F1到直线l的距离为2
.
(1)求椭圆C的焦距;
(2)如果
=2
,求椭圆C的方程.
在
中,角
所对的边分别为
,已知
,
(1)求
的大小;
(2)若
,求
的周长的取值范围.
已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =
,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x,G是BC的中点。沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图) .

(1) 当x=2时,求证:BD⊥EG ;
(2) 若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(3) 当f(x)取得最大值时,求二面角D-BF-C的余弦值.
已知四棱锥
的三视图和直观图如下图所示,其中正视图、侧视图是直角三角形,俯视图是有一条对角线的正方形.
是侧棱
上的动点.

(1)求证:
;
(2)若
为
的中点,求直线
与平面
所成角的正弦值.
如图,在直三棱柱ABC—A1B1C1中,
,直线B1C与平面ABC成45°角。
(1)求证:平面A1B1C⊥平面B1BCC1;
(2)求二面角A—B1C—B的余弦值.
在空间直角坐标系中,已知O (0,0,0) ,A(2,-1,3),B(2,1,1).
(1)求|AB|的长度;
(2)写出A、B两点经此程序框图执行运算后的对应点A0,B0的坐标,并说出点A0,B0在空间直角坐标系o-xyz中的关系.